

RE16 / RM16

Super Small Incremental and Absolute Encoders

SUPER SMALL SIZE

The RE16 and RM16 are compact, sealed, miniature, high speed rotary magnetic encoders designed for use in space-constrained applications. The encoder body is only 16 mm in diameter in an aluminium housing.

HIGH OPERATING SPEED

Features and benefits

- Super small size 16 mm diameter body
- ▶ 5 V power supply versions
- ► High speed operation up to 30,000 rpm
- Industry standard incremental, SSI and linear voltage output formats
- ► Accuracy ±0.3°
- ▶ RoHS compliant

General information


The rotation of the magnetic actuator is read and processed by a custom encoder chip within the body to provide incremental, SSI or linear voltage outputs. The encoder chips process the received signals with up to 12 bit resolution (4,096 counts per revolution) at high operating speeds.

Designed for direct integration into high-volume OEM applications, the RE16/RM16 encoders can be used in a wide range of applications, including motor control and industrial automation.

RE16 encoder

RM16 encoder

Product range

RE16/RM16 I

Incremental with 8 to 1,024 pulses per revolution (32 to 4,096 counts per revolution).

RE16/RM16 S

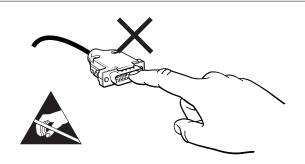
Absolute with synchro serial interface (SSI) with 5 to 12 bit resolution (32 to 4,096 positions per revolution).

RE16/RM16 V

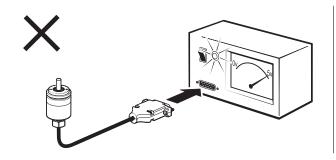
Linear voltage output with ramp from 0 V to 5 V.

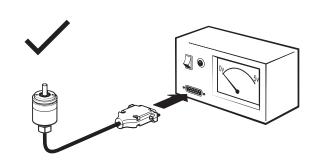
Storage and handling

Operating and storage temperature



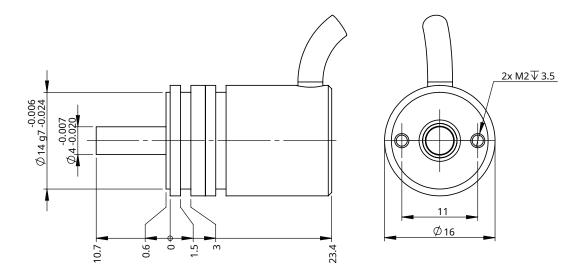
RE16: -30 °C to +125 °C RM16: -40 °C to +125 °C


Humidity

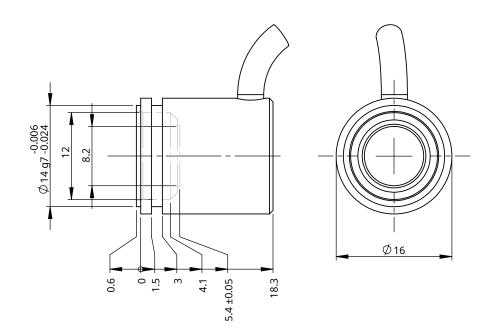


RE16: IP67 on electronic, IP40 on mechanic side RM16: IP67

The RE16/RM16 encoders must be powered from a DC SELV supply that meets the basic requirements of EN (IEC) 60950 or similar specification.

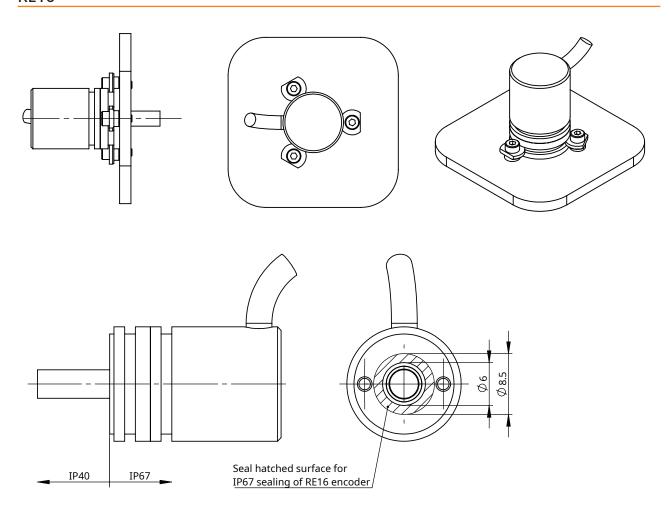


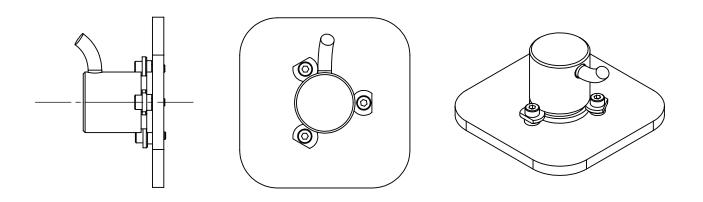
Packaging


Each encoder is packed in antistatic bag.

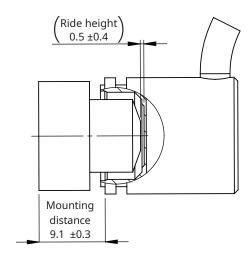
DimensionsDimensions and tolerances are in mm.

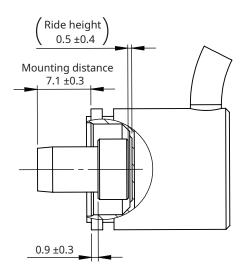
RE16

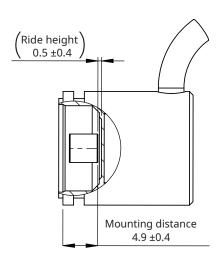

RM16



Installation drawings Dimensions and tolerances are in mm.


RE16


RM16


RM16 with RMA actuator

RM16 with RMH06 actuator

RM16 with RMM44Axx00 magnet

Installation tolerances

Installation tolerances for RM16

Mounting distance	See installation drawings of encoder assemblies on page 6.	
Radial displacement (concentricity)	±0.3 mm	
Perpendicularity	±0.3°	

- Encoder - Magnet

Technical specifications

System data

Accuracy	RE16: ±0.3° RM16: ±0.5°
Hysteresis	0.17°
Temperature drift error	0.005°/°C

Mechanical data

Housing material	Aluminium
Mass	RE16: 33 g (with 1 m cable)
	RM16: 28 g (with 1 m cable)
Wire thickness	AWG28
Maximum speed	30,000 rpm
Maximum cable length	10 m
Maximum radial load	10 N (RE16)
Maximum axial load	20 N (RE16)

Environmental data

Operating and storage temperature	RE16: -30 °C to +125 °C RM16: -40 °C to +125 °C
Environmental sealing	RE16: IP67 on electronic, IP40 on mechanic side RM16: IP67
Shock	100 G (6 ms, standard EN 60068-2-27:2009)
Vibration	40 G (55 Hz–2000 Hz, standard EN 60068-2-6:2008)

Electrical connections

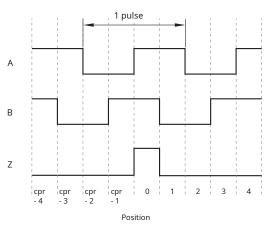
	RE16/RM16 ID	RE16/RM16 SC	RE16/RM16 Vx
Wire colour	ABZ	SSI	Linear voltage
	Shield - Connecte	d to encoder body	
Brown	V_{dd}	V_{dd}	V_{dd}
White	GND	GND	GND
Green	A	Data+	V_{out}
Yellow	В	Data-	
Grey	Z	Clock-	
Pink		Clock+	

Output types

Incremental, single ended

RE16/RM16 ID

Specifications


Power supply	$V_{dd} = 5 V \pm 5 \%$
Current consumption	Typ. 26 mA
Output signals	A, B, Z (single ended)
Resolution	32, 64, 128, 256, 512, 1024, 2048, 4096 cpr

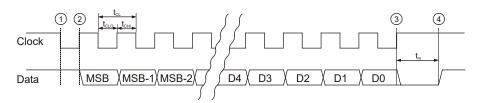
There are three signals for the incremental output: A, B and Z. Signals A and B are quadrature signals, shifted by 90° , and signal Z is a reference mark. The reference mark signal is produced once per revolution. The width of the Z pulse is 1/4 of the quadrature signal period and it is synchronised with the A and B signals. The position of the reference mark is at zero. The graph on the right shows the timing diagram of A, B and Z signals with clockwise rotation of the magnet. B leads A for clockwise rotation.

With incremental outputs it is important to know the difference between ppr (pulses per revolution) and cpr (counts per revolution = $4 \times ppr$). **Pulses per revolution** is the number of periods on one of the quadrature signals in one revolution. **Counts per revolution** is the number of changes of state on both channels in one revolution and is achieved by electronically multiplying by four, using both the rising and the falling edges on both channels.

Timing diagram

Complementary signals not shown

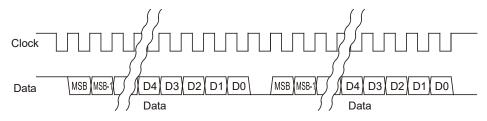
Synchro serial interface (SSI)


RE16/RM16 SC

Specifications

Power supply	$V_{dd} = 5 V \pm 5 \%$
Current consumption	Typ. 26 mA
SSI Data output	Data, RS422
SSI Clock input	Clock, RS422
Resolution	5, 6, 7, 8, 9, 10, 11, 12 bit
Clock frequency	≤ 4 MHz

Serial output data is available in up to 12 bit natural binary code through the SSI protocol. With the clockwise magnet rotation, the value of the output data increases.


Parameter	Symbol	Min.	Тур.	Max.	Unit	
Clock period	t _{cl}	0.25		2 × t _m	μs	
Clock high	t _{cHI}	0.1		t _m	μs	
Clock low	t _{clo}	0.1		t _m	μs	
Monoflop time	t _m	15	19	25	μs	

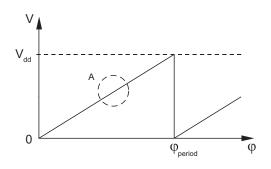
Timing diagram for SSI output

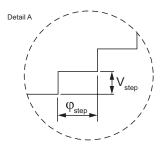
The controller interrogates the encoder for its positional value by sending a pulse train to the Clock input. The Clock signal must always start from high. The first high/low transition (point 1) stores the current position data in a parallel/serial converter and the monoflop is triggered. With each transition of the Clock signal (high/low or low/high) the monoflop is retriggered. At the first low/high transition (point 2) the most significant bit (MSB) of the binary code is transmitted through the Data pin to the controller. At each subsequent low/high transition of the Clock the next bit is transmitted to the controller. While reading the data the t_{CHI} and t_{CLO} must be less than t_{mMin} to keep the monoflop set. After the least significant bit (LSB) is output (point 3) the Data goes to low. The controller must wait longer than t_{mMax} before it can read updated position data. At this point the monoflop time expires and the Data output goes to high (point 4).

If the controller continues sending the Clock pulses after the data is read without waiting for t_m , the same data will be output again and between the two outputs one logic zero will be output. The length of the data depends on the resolution of the encoder.

SSI multi-read of the same position data

Linear voltage, single ended


RE16/RM16 Vx


Specifications

Power supply	$V_{dd} = 5 V \pm 5 \%$
Current consumption	Typ. 26 mA
Output voltage	0 V to V _{dd}
Output load	Max. 2 mA
Resolution of DAC	10 bit
Nonlinearity	1 %

The digital relative angular position information is converted into linear voltage with a built-in 10 bit D/A converter. The linear output voltage swing ranges from 0 V and V_{dd} (5 V). The number of periods within one revolution (N_{period}) can be 1, 2, 4 or 8, representing one full swing over an angle (ϕ_{period}) of 360°, 180°, 90° or 45° respectively. The signal is made up of steps which represent the angular movement needed to register a change in the position (ϕ_{step}) and the resulting change in the output voltage (V_{step}). The number of steps in one period (N_{step}) is given in the table below.

For clockwise rotation of the magnetic actuator, the output voltage increases. For counterclockwise rotation, the output voltage decreases.

Timing diagram for linear voltage output

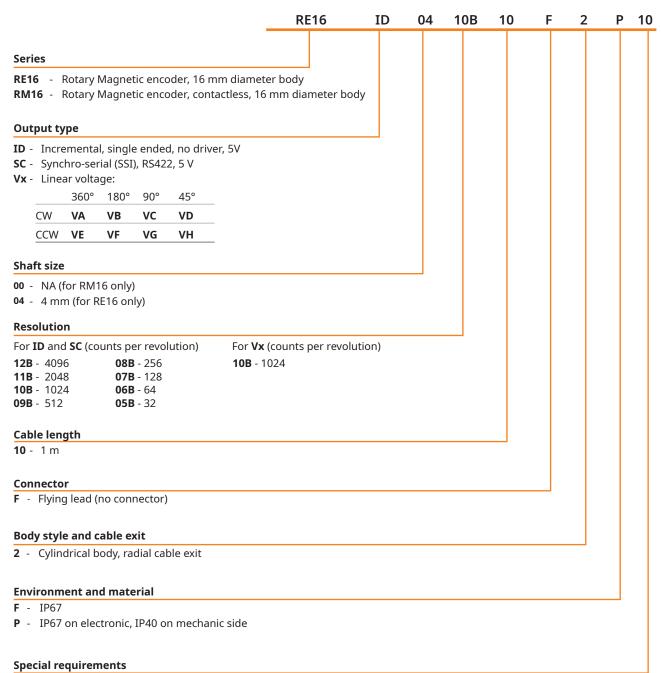
$$\phi_{\text{step}} = \frac{\phi_{\text{period}}}{N_{\text{step}}}$$
 $V_{\text{step}} = \frac{V_{\text{dd}}}{N_{\text{step}}}$

 $\phi_{\text{period}}\,$ = $\,$ Angle covered $\,$ in one period (one sawtooth) $\,$

 V_{period} = Output voltage range for one period

 ϕ_{step} = Step angle (angular movement needed to register a change in the position)

 V_{step} = Output voltage range for one step N_{period} = Number of periods in one revolution


 N_{step} = Number of steps in one period

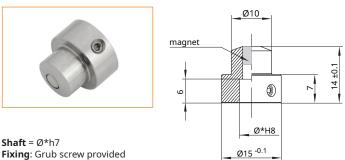
ϕ_{period}	$N_{ m period}$	$N_{ m step}$	ϕ_{step}
360°	1	1024	0.35°
180°	2	1024	0.18°
90°	4	1024	0.09°
45°	8	512	0.09°

Output type and electrical variant

ϕ_{period} Rotation	360°	180°	90°	45°
Clockwise	VA	VB	VC	VD
Counterclockwise	VE	VF	VG	VH

Part numbering

10 - No special requirements (standard)


Table of available combinations

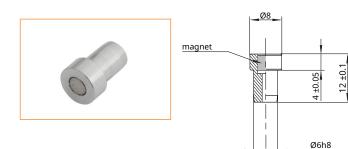
	Output	Shaft		Cable		Body style	Environment	Special
Series	type	size	Resolution	length	Connector	and cable exit	and material	requirements
RE16	ID / SC	04	12B / 11B / 10B / 09B / 08B / 07B / 06B / 05B				Р	
	Vx		10B	10	_	2		10
RM16	ID / SC	00	12B / 11B / 10B / 09B / 08B / 07B / 06B / 05B	10	F	2	F	10
	Vx		10B					

Magnetic actuator and magnet ordering information

Actuator for integration onto shaft

Shaft = Ø*h7 Fixing: Grub screw provided

Part numbers:


For resolutions up to 9 bit absolute (512 cpr incremental)

RMA04A2A00 – Ø4 mm shaft RMA10A2A00 - Ø10 mm shaft RMA05A2A00 - Ø5 mm shaft RMA19A2A00 - Ø3/16" shaft RMA06A2A00 - Ø6 mm shaft RMA25A2A00 - Ø1/4" shaft RMA08A2A00 - Ø8 mm shaft RMA37A2A00 - Ø3/8" shaft

For resolutions from 10 bit absolute (800 cpr incremental) and

RMA04A3A00 – Ø4 mm shaft RMA10A3A00 - Ø10 mm shaft **RMA05A3A00** – Ø5 mm shaft RMA19A3A00 - Ø3/16" shaft RMA06A3A00 – Ø6 mm shaft RMA25A3A00 - Ø1/4" shaft RMA08A3A00 - Ø8 mm shaft RMA37A3A00 - Ø3/8" shaft

Actuator for integration into shaft

Part numbers:

For resolutions up to 9 bit absolute (512 cpr incremental) RMH06A2A00

For resolutions from 10 bit absolute (800 cpr incremental) and

RMH06A3A00

with N-pole marker

Hole = Ø6G7 Fixing: Adhesive (recommended - LOCTITE 648 or 2701)

With N-pole marker scribed to a ±5° accuracy:

For resolutions up to 9 bit absolute (512 cpr incremental) RMH06A2A02

For resolutions from 10 bit absolute (800 cpr incremental) and

RMH06A3A02

Magnet for direct recessing in non-ferrous shafts

Fixing: Adhesive (recommended - LOCTITE 648 or 2701)

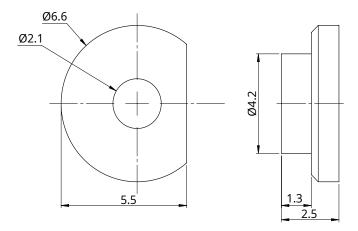
Part numbers:

For resolutions up to 9 bit absolute (512 cpr incremental) RMM44A2A00 (individually packed) - for sample quantities only RMM44A2C00 (packed in tubes)

For resolutions from 10 bit absolute (800 cpr incremental) and

RMM44A3A00 (individually packed) - for sample quantities only RMM44A3C00 (packed in tubes)

^{*} Hole diameter for nominal shaft size. See table on the right for more information on available shaft sizes.


Accessories

Installation accessory set **ACC072**

ACC072 – Installation accessory set

Dimensions and tolerances are in mm. All dimensions are according to ISO2768-f.

Head office

RLS Merilna tehnika d. o. o.

Poslovna cona Žeje pri Komendi Pod vrbami 2 SI-1218 Komenda Slovenia

T +386 1 5272100 E mail@rls.si

www.rls.si

Global support

Visit our website to contact your nearest sales representative.

Document issues

Issue	Date	Page	Description
1	28. 2. 2023	-	New document
2	4. 4. 2023	5	Installation drawings added
		3, 8	Operating and storage temperature
			amended

This product is not designed or intended for use outside the environmental limitations and operating parameters expressly stated on the product's datasheet. Products are not designed or intended for use in medical, military, aerospace, automotive or oil & gas applications or any safety-critical applications where a failure of the product could cause severe environmental or property damage, personal injury or death. Any use in such applications must be specifically agreed to by seller in writing, and is subject to such additional terms as the seller may impose in its sole discretion. Use of products in such applications is at buyer's own risk, and buyer will indemnify and hold harmless seller and its affiliates against any liability, loss, damage or expense arising from such use. Information contained in this datasheet was derived from product testing under controlled laboratory conditions and data reported thereon is subject to the stated tolerances and variations, or if none are stated, then to tolerances and variations consistent with usual trade practices and testing methods. The product's performance outside of laboratory conditions, including when one or more operating parameters is at its maximum range, may not conform to the product's datasheet. Further, information in the product's datasheet does not reflect the performance of the product in any application, end-use or operating environment buyer or its customer may put the product to. Seller and its affiliates make no recommendation, warranty or representation as to the suitability of the product for buyer's application, use, end-product, process or combination with any other product or as to any results buyer or its customer might obtain in their use of the product. Buyer should use its own knowledge, judgment, expertise and testing in selecting the product for buyer's application, enduse and/or operating environment, and should not rely on any oral or written statement, representation, or samples made by seller or its affiliates for any purpose. EXCEPT FOR THE WARRANTIES EXPRESSLY SET FORTH IN THE SELLER'S TERMS AND CONDITIONS OF SALE, SELLER MAKES NO WARRANTY EXPRESS OR IMPLIED WITH RESPECT TO THE PRODUCT, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE, WHICH ARE DISCLAIMED AND EXCLUDED. All sales are subject to seller's exclusive terms and conditions of sale which, where the seller is (a) RLS Merilna tehnika d. o. o., are available at https://www.rls.si/eng/salesterms, (b) Renishaw, Inc., are available at https://www.renishaw.com/legal/en/--42186, or (c) another person, are available on request, and in each case, are incorporated herein by reference, and are the exclusive terms of sale. No other terms and conditions apply. Buyer is not authorized to make any statements or representations that expand upon or extend the environmental limitations and operating parameters of the products, or which imply permitted usage outside of that expressly stated on the datasheet or agreed to in writing by seller.

RLS Merilna tehnika d. o. o. has made considerable effort to ensure the content of this document is correct at the date of publication but makes no warranties or representations regarding the content. RLS Merilna tehnika d. o. o. excludes liability, howsoever arising, for any inaccuracies in this document.